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In this paper we establish a remarkable connection between two seemingly 
unrelated topics in the area of solvable lattice models. The first is the 
Zamolodchikov model, which is the only nontrivial model on a three-dimen- 
sional lattice so far solved. The second is the chiral Potts model on the square 
lattice and its generalization associated with the Uq(sl(n)) algebra, which is of 
current interest due to its connections with high-genus algebraic curves and with 
representations of quantum groups at roots of unity. We show that this last 
"sl(n)-generalized chiral Potts model" can be interpreted as a model on a three- 
dimensional simple cubic lattice consisting of n square-lattice layers with an 
N-valued (N~> 2) spin at each site. Further, in the N =  2 case this three-dimen- 
sional model reduces (after a modification of the boundary conditions) to the 
Zamolodchikov model we mentioned above. 

KEY WORDS: Three-dimensional solvable models; Zamolodchikov model; 
generalized chiral Potts model; high-genus algebraic curves; quantum groups at 
roots of unity; commuting transfer matrices; Yang-Baxter equations; star-star 
relations. 

INTRODUCTION 

D e s p i t e  the  exis tence  o f  n u m e r o u s  e x a m p l e s  o f  an  exac t  so lvab i l i ty  o r  

in t eg rab i l i ty  o f  the  t w o - d i m e n s i o n a l  m o d e l s  of  f ield t h e o r y  a n d  s ta t i s t ica l  

m e c h a n i c s  (see, e.g., refs. I a n d  2 for  a r ev i ew)  the re  is ve ry  l i t t le t ha t  we 

can  say so far  a b o u t  this p h e n o m e n o n  in th ree  o r  m o r e  d imens ions .  

T h e  on ly  k n o w n  so lvab le  s ta t i s t ica l  m o d e l  on  a t h r e e - d i m e n s i o n a l  

la t t ice  wh ich  m i g h t  n o t  be r educ ib l e  to  a free field o r  G a u s s i a n  m o d e l  

( these  l a t t e r  a re  o b v i o u s l y  so lvab le  in any  n u m b e r  o f  d i m e n s i o n s  a n d  are  

o f  l imi ted  in te res t )  is the  Z a m o l o d c h i k o v  mode l .  ~3) Th i s  is an  i n t e r ac t i on -  
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round-a-cube model with two-state spins on the sites of the simple cubic 
lattice. The Boltzmann weights of the model satisfy the tetrahedron 
equations,(3, 4) which ensures the commutativity of the row-to-row transfer 
matrices and ultimately allows one to calculate the partition function per 
site in the thermodynamic limit. (5) Although this partition function was 
shown to be different (s) from that of its "weakly equivalent" three-dimen- 
sional free-fermion model, (6) the question about an exact relation between 
the Zamolodchikov model and the free-fermion model will remain unclear 
until the full spectrum of the transfer matrix is calculated, which has not 
yet been done. Note, in particular, that the two-layer Zamolodchikov 
model reduces (7) to the two-dimensional free-fermion model (or equiva- 
lently the checkerboard Ising model(8)). 

In this paper we present a new solvable interaction-round-a-cube 
model on the cubic lattice with spins taking N >~ 2 distinct values. This can 
be regarded as a generalization of the Zamolodchikov model, reducing to 
it when N = 2. We show that the transfer matrices of the model form two- 
parameter commuting families exactly as in the Zamolodchikov case. The 
rather unsatisfactory feature of the model is that the Boltzmann weights on 
the solvable manifold cannot be made real and nonnegative: in general 
they are complex. Nevertheless, we think that the model is interesting 
enough to be considered. It is possible that it is related to an interesting 
field theory. In particular, it is quite unlikely that for N>~ 3 it can be 
reduced to any conventional sort of the free system: even in the two-layer 
case it reduces to the two-dimensional chiral Potts model, (9 11~ which seems 
to be the most complicated among the known solvable two-dimensional 
models. (For instance, in the scaling limit at the critical temperature it was 
conjectured(12. 13) to be described by a Zu-invariant conformal field theory 
with the central charge c = 2 -  6IN). 

The appearance of the chiral Potts model has a quite natural explana- 
tion described below, but still looks remarkable. Indeed, the same model 
has been already found in the center of various interesting connections. 
First, its Boltzmann weights do not have "the difference property ''(9-11) and 
require high-genus algebraic functions for their parametrization. (14) Second, 
the chiral Potts model was shown to be a "descendant" of the six-vertex 
model (~5) in the sense that its R-matrix satisfies the Yang-Baxter equation 
with two cyclic L-operators related to the R-matrix of the six-vertex model. 
Next, it turned out that the last connection can be extended by replacing 
the six-vertex model (with two states per edge) by an the n-state model (~6) 
associated with the Uq(sl(n)) algebra. This resulted in the "sl(n)-generalized 
chiral Potts model, ''~7) which is a two-dimensional model with spins that 
each take N n- ~ values. Here we show that this last model [let us call it the 
sl(n)-CP model] can be interpreted as a model on a three-dimensional sim- 
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ple cubic lattice consisting of n square-lattice layers. At each site there is an 
N-valued spin. Further, this three-dimensional model is (to within a minor 
modification of the boundary conditions) the generalized Zamolodchikov 
model we mentioned above. 

1. THE I N T E R A C T I O N - R O U N D - A - C U B E  M O D E L  

Consider a simple cubic lattice 5O of M sites with periodic boundary 
conditions in each direction. At each site of 5O place a spin variable ~r 
taking N~>2 distinct values ~ = 0  ..... N - 1 ,  and allow all possible inter- 
actions of the spins within each elementary cube. The partition function 
reads 

Z =  ~ I-[ V(ale, f ,  g lb ,  c, d lh)  ( 1 . 1 )  
s p i n s  c u b e s  

where a,..., h are the eight spins of the cube arranged as in Fig. 1, and 
V(al e, f ,  g lb, c, d lh)  is the Boltzmann weight of the spin configuration 
a,..., h. The product is over all elementary cubes in 5 ~ 

Taking the lattice to have m horizontal layers and letting ~bi denote all 
the spins in layer i, one can rewrite (1.1) as 

Z =  E Y', "" • T~,~r T~r " " " TOmol = Tr T m (1.2) 

where T is a layer-to-layer transfer matrix whose elements are the products 
of all the V functions of cubes between two adjacent layers. Clearly, T 
depends on the Boltzmann weight function V, so we can write it as T(V). 

As is known, ~18' 19) two transfer matrices T(V) and T(V')  commute, 

[T(V), T(V')] = 0  (1.3) 

Fig. 1. 

g b 

! re  
! 
! 

c e . h  

e ~ - ' ~  d 

Arrangement of the spins a,..., h on the corner sites of an elementary cube of the 
simple cubic lattice Ae. 
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if there exist two other weight functions V" and V'" such that V, V', V", 
and V"' satisfy the tetrahedron relations ~3' 4) [see, e.g., Eq. (5.20) of ref. 5, 
which uses the same notations as here]. Alternatively one can require a 
slightly weaker (at least formally) and more transparent condition: the 
Yang-Baxter equation for composite "two-dimensional" weights. Indeed, 
consider a parallelepiped ~ formed by a line of n cubes in front-to-back 
direction with the periodic boundary (Fig. 2). Let ~ = ( 0 ~  1 . . . . .  (Xn) , 

/3 = (/31 ..... /3n), etc., denote the spins on the edges of ~ .  The Boltzmann 
weight of this parallelepiped reads 

S(7, fl, 7 , 6 ) =  1-I V(a ..... h) (1.4) 
cubes  e ,~' 

Obviously S(e,/3, ~, 6) can be viewed as a Boltzmann weight function of 
some two-dimensional interaction-round-a-face model where each of the 
site spin variables takes N" values. Hence, the two transfer matrices T(V) 
and T(V') will commute if there exists another weight function V" such 
that S, S', and S" satisfy the following Yang-Baxter equation: 

S(~,/3, 7, 09 S'(a, r, ~, e) S"(~, a, e, ~:) 
~r 

= ~  s(~,, ~, a, ~) s'(~,/3, ~, ~) s"(/3, ~, a, ~) (1.5) 
~r 

where S' and S" are given by (l.3) with V replaced by V' or V", respec- 
tively. 

There are simple transformations of V that do not change (1.1). For 
instance, if we multiply V(a ..... h) by F(a, f ,  b, g)/F(e, d, h, c), then each 
horizontal face of 5e acquires an F factor from the cube below it and a 

Fig. 2. A paraUelepiped ~'  formed by a line of n cubes in the front-to-back direction of the 
lattice with the periodic boundary.  
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canceling (I/F) factor from the cube above. The effect on the transfer 
matrix T is to apply a diagonal similarity transformation. Provided F is the 
same for T(V) and T(V'), the commutation relation is unaffected. This is 
an example of a "face-factor" transformation. Similarly, one could apply 
"edge-factor" and "site-factor" transformations that leave (1.l) and (1.3) 
unchanged. Note, however, that such transformations will in general 
destroy rotational symmetry of the weight function V (if any), so that 
symmetry properties of the partition function would be evident only in one 
specific "gauge." 

2. THE B O L T Z M A N N  W E I G H T S  

Denote 

co = exp(2rci/N), co1/; = exp(z6N) (2.1) 

Taking x to be a complex parameter and l to be an integer, 0 ~< l~< N -  1, 
define a function w(x, l) such that 

1 

w(x, I) = [A(x)] t 1-[ (1 --cokx)-i  (2.2) 
W(X, O) k --1 

A(x) = (1 - x N )  1IN (2.3) 

where w(x, 0) is yet arbitrary. From these definitions it follows that 

w(co~x, O) w(x, l + k )=  w(x, k) w(cokx, l) (2.4) 

w(x, l + N ) =  w(x, l) (2.5) 

Now, fix four complex parameters p, p', q, q', and define 

s(Ic, l)  = co k~, 

Wpq(k) = w(p/q, k), 

Again, one can easily show that 

~b(k ) = ((I)1/2) k(N + k) 

I~ pq(k ) = Wpq(k ) ~b(k ) 

s(a + N, b) = s(a, b + N) = s(a, b), ~(a + N) = q~(a) 

s(a, b + c) = s(a, b) s(a, c) 

With these notations define the weight function V(a ..... h) as 

N - - 1  

V(alefg[bcd[h)= ~ v,~(aJefglbcd[h) 
c ~ = 0  

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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where 

v~(alefg[bcdl h) 

= W p , p ( e  - -  c - -  d+ h) W;lp(a - g - f +  b) s(c - h, d -  h) 

x s (g ,  a - g - f  +b)  

x { W~lq (e -- c -- a) Wpq(d  - -  h - a) W q ' p ( a  - -  f + b) 

• kp,q.(a - g -  or) s(a, a - c - f +  h)} (2.10) 

where WTql(l) denotes 1 / W p q ( l ) .  Clearly, V is a function of p, p', q, q' (as well 
as of the spins a ..... h), so that we can exhibit this dependence as 

V =  V(p, p', q, q') (2.11) 

(In fact, it depends only on three independent ratios among the variables 
p, p', q, q'). From (2.5), (2.7), and (2.9) it follows that Vis unchanged upon 
independent increments of spins a ..... h by the value of N, so we can regard 
them as defined modulo N. Substituting V in the form (2.9), (2.10) into 
(1.1), we see that Z is the partition function of an Ising-type model on a 
body-centered cubic lattice of 2M sites. A typical cube, with its center spin 
a, is shown in Fig. 3. There are three-spin interactions on the shaded 
triangles, corresponding to the w-function inside the curly bracket in (2.10). 
In addition there are co-type factors such as s(a, ~r) associated with the 
edges linking ~r to a, f ,  c, h (these edges are denoted by heavy lines in 
Fig. 3). Note that four-spin interaction terms and co-type factors before the 
curly brackets in (2.10) are just site-type and face-type equivalence trans- 
formation factors associated with the top and bottom faces. These cancel 
out of the partition function and are introduced in (2.10) merely for later 

g i b~ 

p p 

Fig. 3. A typical elementary cube of L~, with corner spins a,..., h and the center spin a, 
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convenience. One could also visualize the variables p, p', q, q' regarding 
them as rapidity-type variables associated with oriented dashed lines 
passing through the centers of the shaded triangles. 

Now we want to prove the Yang-Baxter equation (1.,5) for the 
"parallelepiped weights" (1.4). In fact we will do this for a slightly more 
general inhomogeneous model allowing the variables p, p', q, q' to vary 
from cube to cube in (1.4). Let p~, p'i, q~, qi-, i =  1,..., n, denote the corre- 
sponding quadruplet of the variables for the ith cube in N. These variables 
are not arbitrary: they should be constrained so that the quantity 

F(p~, p'~, qi, q~) = independent of i (2.12) 

is the same for any cube in ~ ,  where 

( p N  _ _  q N ) ( p , N  __  q , N )  

F(p, p', q, q') = ( p U  _ q , N ) ( p , U  _ q U )  (2.12a) 

Let us count the number of independent parameters on which the function 
S, (1.4), depends. Noting that the individual V function, (2.11), for the ith 
cube in # depends only on three ratios among the corresponding variables 
pi, p'~, q~, qS, and taking into account the n -  1 constraints (2.12), we are 
left with 

3 n -  ( n -  1 ) = 2 n +  1 (2.~3) 

independent parameters. Further, for any two successive cubes i and i +  1 
define four numbers k~'l ), i,(o k(O ~(,) i =  1 , . . . , n - I ,  satisfying the ' ~12~ 21~ '~22~ 

following four relations. The first one reads 

/~( i )  n N  .a- L~(i) 
'~22  F i  ~ ' ~ 2 1  P~+I lg(i),N..l_~(i), i = 1  ..... n - 1  (2.14) 
'~ 12/-" i / " 1 1  

and the other three are obtained from this by replacing the symbol p and 
p', q, or q', respectively. For  any fixed i these four relations can be regarded 
as homogeneous linear system with k's as unknowns. Its determinant 
vanishes due to relations (2.12), so that a solution always exists. The 
normalization of the k's can be chosen such that 

det K (~'~ = 1, i = t ..... n - 1 (2.I5) 

where K "~ are two two-by-two matrices whose elements are ~ ( 0 _ ~ , ~  ~= ab  - -  "~ ab  ' 

a , b =  1,2. 
Regarding the matrices K (~ i = 1,..., n - l, as fixed, one could say that 

the equations (2.14) define an algebraic curve in the n-dimensional complex 
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space C n, while the sequences P =  (p~ ..... P,), P ' =  (P'I ..... p',), etc., specify 
points on this algebraic curve. The parameters ft~(i)~ which specify the t '~ ab J 
curve are called the "moduli" of the curve. Note that there are only 2n - 3 
independent moduli relevant to our problem. In fact, multiplying each 
quadruplet of variables pi, p'~, qe, q'; by an overall factor )~i ( i=  1,..., n) 
leaves the weight function (1.4) unchanged, while the matrices K <~ trans- 
form as 

K (i) ~ A i + l l K ( i ) A i  (2.16) 

where A~=diag(2~/2, 271/2). These transformations eliminate n degrees of 
freedom among the 3 ( n - 1 )  independent matrix elements of the K (~ 
satisfying Eqs. (2.15). The four points P, P', Q, Q' on the curve (2.14) 
(which will be referred to as rapidity variables) add four more degrees of 
freedom, which gives (2n - 3) + 4 = 2n + 1 for the (continuous) parameter 
counting balance, exactly coinciding with (2.13) as it, of course, should be. 

Thus, the weight function (1.4) is a function of the four rapidities P, 
P', Q, Q' and of the 2n - 3 moduli of the curve (2.14). 3 Assuming this latter 
dependence on moduli as implicit, and omitting the spin dependence, we 
can exhibit this as 

S= S(P, P', Q, O') (2.17) 

We also need to define a "modified model" similar to that considered 
in ref. 5 for the N = 2 Zamolodchikov case. There are two sorts of vertical 
faces in ~ :  those whose perpendiculars run in front-to-back direction (such 
as afde and gbhc in Fig. 1), and those whose perpendiculars run right-to- 
left (aecg and fdhb). Call the former type FB, the latter RL. At the center 
of each FB face place a spin #, with values 0,..., N -  1. Let the spins on afde 
and gbhc in Fig. 3 be/~ and #', respectively. Choose them so that 

a = # - # '  (mod N) (2.18) 

Do this for all cubes in 5e. If a '  is the spin behind a, and a" is the spin 
behind that, etc., then on using the cyclic boundary conditions we observe 
that 

a+a'+a"+ . . . .  ( # -  #') + (#' - #") + (kt" -- i t") + . . . .  0 (mod N) 

(2.19) 

[Each # spin occurs twice with opposite signs. If ~q has n layers per- 
pendicular to the front-to-back direction, then there are n a-spins on the 

3 N o t e  t h a t  it  is not a n  a lgeb ra i c  func t ion  o n  the  curve  (2.14). 
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LHS of (2.19).] Thus we can use (2.18) only if the sum of each horizontal 
front-to-back line of a-spins is constrained to be zero. We shall refer to the 
model subject to these constraints as the modified model. Substituting (2.9) 
in (1.4), one can split the resulting sum over the n a-spins al,..., a, (one for 
each cube in ~ )  into N terms 

S = S 0 -}- �9 27 S N 

Sk = 

c r l +  . . .  + a n = k  

n 

(2.20) 

(2.21) 

Here we omitted all the argument dependences and denoted the function 
(2.10) for the ith cube as ,")  Clearly, the term So in the RHS of (2.20) is - a  �9 

the "parallelepiped weight function" of the modified model. 
A typical cube of s showing the new spins/, and #' is drawn in Fig. 4. 

We see that we have now four-spin interactions on shaded rectangles. 
Because of the identity (2.8), there are ~o-type factors associated with the 
eight edges (~, c), (/~, h), (#, a), (/~, f ) ,  (#', c), (/~', h), (#', a), (/~', f ) .  

Now, we are ready to formulate an exact form of the Yang-Baxter 
equation (1.5). For  convenience choose the number of vertical front-to- 
back layers of s n, to be relatively prime with N. Let P, P', Q, Q', R, R' 
be six points on the same curve (2.14); then the Yang-Baxter equation 
(1.5) is satisfied if we set S as in (2.17) and 

S' = S(P, P', R, R'), S"= S(Q, Q', R, R') (2.22) 

The same statement remains true if we replace S in (2.17), (2.22) by the 
parallelepiped weight function So of the modified model. This latter state- 

Fig. 4. The modified model obtained by changing from a to # spins according to (2.18). 
There are four-spin interactions on shaded rectangles; m-type factors on edges are shown by 
solid or broken (but not dotted) lines. 
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ment related with the modified model will be proved in the next section. 
Here we assume that it is true and show that it implies the Yang-Baxter 
equation (1.5) with (2.17), (2.22) for the full weight function S. 

To see this, one needs to use some simple symmetry properties of the 
weight function V which follow directly from its definition (2.9) and (2.10). 
In particular, one can easily show that the weight function So defined in 
(2.21) remains unchanged upon the overall increment of all the spins on 
any edge of the parallelepiped ~.  Remembering that the number of the 
front-to-back layers n is assumed to be relatively prime with N, one can 
conclude that So depends only on the pairwise difference of the spins on the 
edges of ~.  Setting ( c ~ ) = c q +  . - -+~n  and similarly for ( f l ) ,  (7) ,  and 
(6 ) ,  taking into account that the spins on ~ obey the periodic boundary 
conditions and using the properties (2.4) of the function w(x, l) entering the 
expression (2.6), one can easily show that 

Sp(k-t~(P, P', Q, Q'I~, 13, 7, 6) 

=co ~k-t)~<~> <P>+<~>-<~>)Gkt(P, P', Q, Q') 

x So(oJ~P, ookP ', ~ZQ, coZQ, i ~, fl, 7, 6) (2.23) 

where p = - n (rood N) and Gkt(P, P', Q, Q') is a scalar factor independent 
of the spins. This relation gives the change of Sp~_t) under overall 
increments of the spins, e.g., incrementing each of al,..., a, by unity simply 
multiplies Sp(k_t) by co p~t-k). 

Substitute the sum (2.20) for each of the S functions in the 
Yang-Baxter equation (1.5) and expand the products. Then each side of 
these equations becomes a sum of N 3 terms. For example, the LHS of (1.5) 
will contain terms of the form 

~ Sk(P, P', Q, Q'lc~, fl, T, o) St(P, P', R, R'la, y, 6, e) 
~7 

XSm(Q,Q',R,R'[~,a,t~,~,t<), k , l ,m=O, . . . ,N-1  (2.24) 

The terms with k = l =  m on both sides are equal: this is the Yang-Baxter 
equation for the modified model we just assumed. We shall now show that 
all the other pairs of the corresponding terms on both sides are equal as 
well, so that we in fact have N 3 distinct Yang-Baxter equations satisfied 
instead of only one. Labeling these Yang-Baxter equations by the three 
integers (k, l,m) introduced above, one can split them into two sets: 
the first set consists of those N 2 equations where k = l - m  (mod N) and 
the second set consists of the remaining N2(N - 1) equations. All the 
Yang-Baxter equations in the first set are corollaries of the single equation 
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with k = l = m = 0. In fact, substituting the rapidity variables P, P', Q, Q', 
R, R' in the (0, 0, 0) equation with P, P', ~o-kQ, ~o kQ,, ~o-tR, ~o-tR,, 
respectively, and using (2.23), one obtains the (pk, pl, p( l -k))equat ion.  
The equations in the second set are trivial in the sense that both sides 
vanish exactly. For example, substituting the expression (2.23) for the 
weight functions into (2.24) and performing the summation over the 
variables o" 1,..., o n for any fixed set of their differences, one obtains a factor 
Zj  U ,  causing the term to vanish. 

Note that we considered the model with the front-to-back layer 
inhomogeneity only, implicitly assuming the translational invariance in the 
horizontal and vertical directions. The form of the rapidity dependence 
(2.17), (2.22) in the Yang-Baxter equation (1.5) suggests that one could 
introduce additional inhomogeneity in these directions as well, proceeding 
exactly as in two-dimensional case. Fixing the 2 n -  3 independent moduli 
of the curve (2.14) to be the same for the whole lattice and taking it to have 
l column and m rows, introduce 2( /+m)  rapidity variables Pj, P~, 
j =  1,..., l; Qj, Q}, j =  1 ..... m (one pair for each column and row, respec- 
tively). Then assign the Boltzrnann weight 

S = S(Pj, P~, Qk, Q'k) (2.25) 

for the parallelepiped located at the intersection of the j th  column and the 
kth row. The total number of the parameters defining this fully 
inhomogeneous model is equal to 2 ( l+m + n ) -  3. 

3. G E N E R A L I Z E D  C H I R A L  POTTS M O D E L  

In this section we show that the modified three-dimensional model 
formulated in the previous section exactly coincides with the "generalized 
chiral Potts model" [-or sl(n)-CP model] of ref. 17. Note that this latter 
model was originally formulated as a two-dimensional model, but here we 
give its three-dimensional interpretation. 

First, recall the basic definitions of this model. Following ref. 17, con- 
sider an oriented two-dimensional square lattice s and its medial lattice 
~lsq (shown in Fig. 5 by solid and dashed lines, respectively). The oriented 
vertical (horizontal) lines of ~'sq carry rapidity variables P, P' (Q, Q') in 
alternating order (note that the orientations of rapidity lines shown by 
open arrows alternate, too). The edges of the lattice ~sq are oriented in 
such a way that all the SW-NE edges have the same (SW-NE) direction, 
while the SE-NW edges are oriented in a checkerboard order. (Note that 
our lattice ~q~q is 90 ~ anticlockwise rotated with respect to the lattice shown 
in Fig. 1 of ref. 17 with their rapidities p, p', q, q' replaced by Q, Q', P, P', 
respectively.) 
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p' p' p' 

Q - - - ~ - - [ > ,  

. . . .  

. . . .  

Fig. 5. An oriented square lattice ~q  and its medial lattice ~'sq shown by solid and dashed 
lines, respectively. 

Each rapidity variable P here is represented by n 2-vectors 
(h+(P),hT(P)) ,  i= 1 ..... n, n>~2, which specify a point of the algebraic 
curve defined by the relations 

( h+(p)N~=K(o(h++I(pIN~ i =  1,..., n--  1 (3.1) 
h7 (p)UJ \h~+~ (p)UJ' 

where K ~~ are the same moduli matrices as defined after Eq. (2.15). 
Obviously this curve is related to our former curve (2.14), being its 
covering. In fact, setting 

p ~ h T ( P ) / h + ( P ) ,  i= 1,..., n (3.2) 

one gets (2.14) from (3.1). 
On each site of the lattice ~c,e~q place n Zu-spins, which are described 

by the local variable 

= (a 1,..., ~,), c~i = 0 ..... N -  1 (3.3) 

It is convenient to adopt a modulo n convention for the indices running 
through the values 1 ..... n, regarding them as belonging to Z, .  Denote 

~i~-(O~i--O~i+l) (mod N), 
( ~ ) = ~ 1 +  ""  + ~ ,  

( (~)  = 0~1 -{'- "'" "~- (~n 1 

i ~ Z .  

(3.4) 

There are only two kinds of neighboring local state pairs, depending 
on the relative orientation of the dashed and solid lines as indicated in 
Figs. 6a and 6b, with states ~ and fl, and Boltzmann weights ff'po(a, fl) and 
(Wvo(a, f l ) ) - i  on the edges of ~ q .  The arrow from ~ to fls indicates that 
the argument is (~, fl) rather than (fl, a). The partition function of the 
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(a) 

Fig. 6. 

\ \  _ 1 

Wm(~,~) p / l \  ~ WQ~(~,~) 

(b) 

The two Boltzmann weights depending on the orientation of the spin pair with 
respect to rapidity lines P and Q. 

model is defined as a sum over all possible configurations of spin variables 
of the products of the Boltzmann weights for all the edges of 5%. 

To write down fflpQ(~, fl), introduce the function gpQ(O~, [3), which 
possesses the properties 

geQ(~, o~)= gee(a, fi) geo(fl, 7) geQ(7, ~)=  1, W, [3, ~ (3.5) 

Then it is unambiguously defined by 

h/+- l(P) hi-I(Q) - h/~ I(P) hi +_ l(Q)co ai-' 
gpQ(Oqo~+6,)= h+(P)h _(Q)_h_(P)h+(Q)col+a, (3.6) 

The symbol 5i means a unit vector in the ith direction, i.e., all its 
components vanish except the value 1 in the ith place; co = exp(2~i/N). 

The Boltzmann weight WeQ(o~, fl) has the form 

where 

w,v(o~, [3) 
r  t r  sect" ,  e - f l )  (3.7) ~,v(0,  0) 

Q(a, f l )= ~, fii_l(o:i-fli) 
i ~ Z n  

Iterating Eqs. (3.6), one can show thar 2~ 

r-f <a> a ( " ) t - k +  1) gpQ(O, ~ )=  ~.tk=l ~'e9.~ 
i i - - 1  " A~b(k, ) H~=I H~',= l 

where 

A~)o(k ) = h + (P) h? (Q ) - hi-(P) h + (Q )cok 

Next, owing to the relations (3.1), the quantity 

N - - 1  

k = O  

(3.8) 

(3.9) 

(3.1o) 

(3.~1) 
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is independent of i. Using this fact and the simple relation ~2n= - ( ~ )  
(mod N), we can further rewrite (3.9) as 

g?~ ~)- ,=,  k ~ ~A~')o(k~)J (3.12) 

Substituting now (3.12) into (3.7) and using the relations (3.2), we finally 
obtain 

[Tl'reQ(O~'fl) FI {O)(#'-#'+l)(~'+l-#'*l)w(pi/qi, o~i--~i+l--fli'q-fli+l)} (3.13) 
ff'pdo, o) ,=~ 

where w(x, k) was defined in (2.2). 
Note that there is some redundancy in the description of local spin 

varialbes: the spin Boltzmann weights (3.7) are unaffected by incrementing 
each of e~ ..... an by unity for any local state e on ~ q .  Thus, there are only 
n -  1 relevant spin degrees of freedom at each site, say n -  1 independent 
pairwise differences among ~1 . . . . .  (x n. For  later notational convenience we 
will not try to remove this redundancy here. 

When the moduli matrices K (i) are in general position, then the genus 
of the algebraic curve (3.1) is (17) 

g = N 2(n- l )[-(n-  1 ) N - n ]  + 1 

However, when all these matrices are equal to the identity matrix the genus 
is zero. As usual, one expects in the latter case the model to be critical. In 
fact, it was argued in ref. 20 that the scaling limit of the model in this case 
is described by an sl(n)-parafermion conformal field theory. (21'22) In 
particular, when n = 2  (two-layer case) the model reduces to the two- 
dimensional ZN-invariant lattice model (13) whose scaling behavior is 
described by a ZN-invariant conformal field theory of ref. 12. 

One can group the sites of the lattice either into elementary stars or 
into elementary boxes as shown in Figs. 7 and 8, respectively. Denoting the 
Boltzmann weight of the star as 

Wstar(P , P', Q, Q'I~, fl, y, 6 ) = ~  I~pQ(~, I~) W~Q,,p(#, y) I~p,Q,(6, I~) (3.14) 

and the Boltzmann weight of the box as 

R(P,P',Q,Q'I~,fl,  y, 6)= ff'?Q(~ ff'Q''e(b'y)ff'e'Q'(7'fl) (3.15) 
ffG,e(~,/~) 
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Q~ . . . . . . . .  

It " ~  II 

P' i' 

Fig. 7. An elementary star of ~ q .  

one can view the model either as an interaction-round-a-face with the face 
weight function given by (3.14) or as a vertex model with the vertex weight 
function given by (3.15). The latter weight function, R, will be called the 
R-matrix of the model. Clearly, the above two representations of the model 
are equivalent to each other (provided the periodic boundary conditions in 
the horizontal direction are assumed). In particular, they lead to the same 
row-to-row transfer matrix Tsq. Indeed, arranging the spin states as shown 
in Fig. 9, one can write the matrix elements of Tsq in the following two 
forms: 

M 

(T=q(P, P', Q, Q'))r = ~ ~ R(P, P', Q, Q'[(~i, #~+~, 0~, #i) 
(.} i+ 1 

M 

= ~ Wstar(P, P', Q, Q'l~i, Oi+l, ~Yi+l, O'i) (3.16) 
i+1 

7 

P, 

Fig. 8. An elementary box of ~r 

822/69/3-4-2 



468 Bazhanov and Baxter 

Fig. 9. 

r r / /'~' 
', ' ', I 2 ,  / 

. . . . .  

p p' p p' p, 

Graphical representation of elements of the transfer matrix (Tsq(P , P', Q, Q'))r as 
given by Eqs. (3.16). 

Next, the R-matrix (3.15) satisfies the following Yang-Baxter 
equation4: 

R(P, P', Q, Q'[c~flvp) R(P, P', R, R'lv762) R(Q, Q', R, R'l~Aex) 
#v2 

= ~., R(Q, O', R, R'[flyv#) R(P, e', R, R' I ~#2tc) R(P, e', Q, O'12v&) 
,v~ (3.17) 

which was originally conjectured in ref. 17 and then proved in ref. 23 for 
odd values of N and later in ref. 20 for any value of N ~> 2. Obviously there 
should exist a counterpart of this statement for the interaction-round-a-face 
formulation of the model. Before showing this, we establish another and, in 
fact, a more fundamental relation between the Boltzmann weights of the 
model. This is so-called "star-star" relation. 5 Setting R' = Q' = P' in (3.17), 
using the property 

n 1 

Wee(~, fl) = Wee(O, O) 1-[ 6~,.g, (3.18) 
i~1 

and redenoting the rapidity variables, one can reduce this equation to the 
following form: 

W ( 1 )  i p  , 
s t a r ~ , = ,  P ,  Q, O'l~, fl, 7, 6) = w (2) tp Q' --star,--, P ,  Q, l a, fl, 7, 6) (3.19) 

4This is Eq. (0./5) of ref. 17 with their "e~ ' S~r Q,Q') replaced by our 

R(P,P', Q, Q'I~,B,~,,6). 
5 The authors are indebted to Dr. R. M. Kashaev for an explanation of the derivation of this 

relation given here. 
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where 

W(1) ( p  : star,-, P ,  Q, Q'lcq fi, 7, 6) 

= f f . p , p ( ~ ,  f l )  - - 1  Wp.p(6, 7) Wsta~(P, P ,  Q, O'l~, fl, 7, ~) (3.20) 

with Wstar given in (3.14) and 

W(2) ~p  , s t~r , - ,P ,  Q, Q'lT,  fl, y ,~)  

= l~:~,~(c~, 6) ff'Q'Q(fl, 7) ~ ff'pQ(/z, 6) if'O, ?(c~,/~) W,o,o,(lz, fl) (3.21) 
ff'ev(/~, 7) 

Equation (3.19) is a statement of equality of the Boltzmann weights of the 
two "stars" shown graphically in Fig. 10, so it can be naturally called 
the star-star relation. In the presented derivation it is the consequence of 
(3.17) and (3.18). Conversely, the star-star relation (3.19) implies the 
Yang-Baxter equation (3.17). The proof consists in a repeated application 
of (3.19) to the LHS of (3.17) so as to transform it to the RHS. (This 
process can be described graphically as moving one pair of rapidity lines, 
say P, P', through the intersection points of the other two pairs of rapidity 
lines). Similarly, one can prove the required Yang-Baxter equation for the 
interaction-round-a-face weight function 

E W ( 1 )  ( p  ' Q' - - s t ~ , - , P , Q ,  I~ Y,a)  W(a)(p., star,~,  --19', R , R ,  ta, y, 6, E ) 
G 

•162 Q',R,R'fo~,cr, e,g) "" star~:--, 

= ~  ,. star,~,W(1)t() Q',R,R'I f l ,  7,~, a) W st,r,_,p,R,R'[o~,fl,~r, ' 
G 

• W (I) (p  , Q, - -s tar ' , - - '  P ,  Q, Ix, a, 6, e) (3.22) 

', / ', , 

Q'_ ~>_~__ Q: .. 

I 1 I I 
p p' p p'  

Fig. 10. The Boltzmann weights of these two stars are equal in virtue of the star-star 
relation (3.19). 
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Thus, both Yang-Baxter equations (3.17) and (3.22) are corollaries of 
the star-star relation (3.19). Note that for n = 2 the model under considera- 
tion reduces (see Section 5) to the original chiral Potts model ~H) and the 
star-star relation (3.19) is just a consequence of the star-triangle relation 
[Eq. (1) of ref. 111. However, for n>~3 the corresponding star-triangle 
relation apparently does not exist (at least it is not known to the authors) 
and the star-star relation (3.19) seems to be the simplest relation of this 
type. 

Note that the Yang-Baxter equation (3.22) has the same spin arrange- 
ment and the same rapidity dependence structure as in the Yang-Baxter 
equation (1.5) with (2.17), (2.22). In fact, these equations are more than 
just similar: we shall now show that the star weight function (3.20) exactly 
coincides with the parallelepiped weight function So, (2.21), of the 
"modified model" of Section 2, 

W(1) lp  P'Q,Q'I~,fl, T,,5)=So(P,P',Q,Q'I~,t~,7,6) (3.23) s t a r ~ - - '  

completing thereby the proof of the commutativity of the transfer matrices 
for the three-dimensional model we consider in this paper. 

The weight function gzeQ(~, fl) is associated with the edge of the two- 
dimensional square lattice connecting the sites with the states ~ = (~,..., ~n) 
and fl = (ill,..., fin) on them as shown in Fig. 6. Let us extend this edge in 
a third additional dimension perpendicular to the plane of the two-dimen- 
sional lattice to form a rectangle consisting of n squares, and place the 
spins ~ ..... ~n, etc., on the edges of this rectangle, as shown in Fig. 11. We 
also assume cyclic boundary conditions in the new dimension, considering 
the spins ~1, fl~ as next to ~n, ft,, respectively. Do this for all edges of ~ q .  
Then it becomes the three-dimensional cubic lattice with an N-valued spin 
at each site. The weight function I,VpQ(~, fl) is now regarded as a 
Boltzmann weight of the rectangle of Fig. 11. Remarkably, this weight 
function possesses a specific factorization property: the ith term in the 
product (3.13) depends only on the four spins ai, fli, fli+ 1, ~i+l located at 
the corner of the ith elementary square within the rectangle, so that one 
can naturally regard it as a local Boltzmann weight of that square. This 
property allows us to interpret the model as a three-dimensional model 
with local interactions. 

Substitute the expression (3.13) into the RHS of (3.20) and use the 
relation 

c~ = (-I ~( /~t -  6i) (3.24) 
i = 1  
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L31 

~ ~ n  

3 ~ ~  

91 

o~ A A I] v v 

Fig. 11. Spin arrangement on the rectangular formed by the extension of a typical edge of 
~sq in the third additional dimension perpendicular to the plane of the two-dimensional 
lattice. 

where Q(e, 13) and ~b(k) are defined in (3.8) and (2.6), respectively. Then, 
after canceling a number of ~o-type factors, one can rewrite the RHS of 
(3.20) as 

Y v ,i, (Iti--tli+l)((~i](~i, ~i, I~i+ 11~i+ 1, 0~i+1, /~il fli+ l) (3.25) 
# i=1 

where v~ ) is defined by (2.10) with the parameters p, p', q, q' replaced by 
Pi, Pl, qi, q~ respectively. This is the expression (2.21) for the weight 
function So. 

Thus, we have proved the commutativity of the transfer matrices for 
the three-dimensional model with Boltzmann weight function (2.9). More 
precisely, we have proved this for the inhomogeneous model where the 
parameters p, p', q, q' can vary from one vertical front-to-back layer to the 
other [subject to the constraints (2.12)]. Let us recall the sequence of our 
arguments (in reverse order). The Yang-Baxter equation (3.17) for the 
R-matrix of the sl(n)-CP model (proved in refs. 20 and 23) implies the 
Yang-Baxter equation (3.22) with (3.23) for the parallelepiped weight func- 
tion So of the modified model, which in its turn leads to Eqs. (1.5), (2.17), 
and (2.22) and, hence, to the commutativity (1.3). The imposed restriction 
that the number of the vertical front-to-back layers n should be relatively 
prime with N is probably not essential. In fact, one could expect an 
existence of local integrability conditions, like the tetrahedron relations, in 
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the model, which involve few different weight functions (2.9), rather than 
"global" constructions like (1.4). For instance, as we shall see in the next 
section, our three-dimensional model reduces to the Zamolodchikov 
model (3) when N = 2 ,  where the tetrahedron relations are known. (3'4~ 
[Note that these relations imply ~ 19) the Yang-Baxter equation (1.5) for 
an arbitrary number of layers n.] Alternatively, one could try to establish 
the three-dimensional star-star relations, which are also the local 
integrability conditions, but they are simpler than the tetrahedron rela- 
tions. These star-star relations are known for the Zamolodchikov case and 
apparently could be generalized for a general value of N. A conjectured 
form of these relations is given below [Eq. (6.1) of Section 6]. 

4. THE Z A M O L O D C H I K O V  T H R E E - D I M E N S I O N A L  M O D E L  

Following ref. 5, we consider the Zamolodchikov model in an inter- 
action-round-a-cube formulation rather than in the original face-spin 
formulation of ref. 3. Then it is precisely a model of the type defined in 
Section 1 with spins taking two values, N--2.  

In ref. 5 it was shown that up to face-type and site-type equivalence 
transformations discussed at the end of Section 1, the Boltzmann weight of 
the spin configuration a,..., h around the elementary cube in Fig. 1 can be 
written in the form 

V(a ..... h) =~ ,  ( -  1) cr(a-f-c+h) e x p [ g ( K l s a S g  
~ = 0  

+ K 2 s b s f +  g3sash q- g4ScSe)] (4.1) 

where Sa = ( -- 1 )a, Sb = ( _ 1 )b, etc., are the spin variables used in ref. 5, with 
values __. 1. The coefficients K 1 ..... g 4 are independent of the spins. They are 
functions of the three dihedral angles 01, 02, 03 which parametrize the 
Boltzmann weights of the model. A geometric interpretation of these angles 
is explained below in this section. 

As in ref. 5, it is convenient to consider 01, 02, 03 as angles of a spheri- 
cal triangle and define the spherical excesses ~o ..... ~3 bY 6 

2c% = 01 + 0 2 ---]- 0 3 - -  7~, ~ i  : Oi- CXo (4.2) 

for i =  1, 2, 3. Choose 01, 02, 03 so that 01, 02, 03, ~o,..-, ~3 are all real, 
between 0 and n. Further define 

ti = [tan(~i/2)] 1/2, i = 0,..., 3 
(4.3) 

T~ = [ tan(Oi l2)]  1/2, i =  1, 2, 3 

6 The reader  should  no t  confuse these no ta t ions  wi th  the no ta t ions  for the spin var iables  used 

before. 
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and 

x = a r c t a n h ( t o / t 3 ) ,  x' = arctanh(tl t2) 
(4.4) 

y = a r c t a n ( t z / t l  ), y'  = arctan(t0/t3) 

(choosing x ..... y '  to be real and nonnegative, y and y' to be not greater 
than rr/2); then 

2K1 = - x '  - iy' ,  2K2  = x - iy'  
(4.5) 

2K3 = - x '  + iy',  2 K 4 =  x + iy' 

There are more useful expressions for K1,...,/s found in ref. 5 
[Eqs. (7.19) therein]. To write them down, set 

ve = tanh 2Ki, i = 1 ..... 4 (4.6) 

and let a l ,  a2, a3 be the three sides of the spherical triangle, opposite to the 
angles 01, 02, 03, Then 

vx = - Z T l  7"2, v2 = - i z T z / T 1  
(4.7) 

v3 = - z - I T I T 2 ,  l~4=i z  1 T 2 / T  1 

where z = e x p ( i a 3 / 2  ). Thus, vl,..., v4 satisfy the simple relation 

/)1/)4 "~ /)2/)3 = 0 (4.8) 

One can conveniently parametrize them by introducing four new variables 
p, p', q, q': 

vl  = q ' /p ' ,  v2 = q ' /p ,  1)3 = P / q ,  /)4 = - P ' / q  (4.9) 

Thus the ratios of p, p ' ,  q, q '  are functions of 01, 02, 03. Conversely, 
one can express 01, 02, 03 through these ratios. From (4.7) and (4.9) one 
easily obtains 

tan -~ = ipP-;, t a n ~ = i q q  

(4.10) 
exp(ia3) = qq---~' p p '  

Using these relations and the basic relation between the elements of the 
spherical triangle 

cos 03 = sin 01 sin 0 2 COS a 3 - -  COS 01 COS 0 2 (4.11 ) 
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and performing some elementary calculations, one obtains 

_~2 = i j-(p2 _ q2)(p,2 _ q,2)-~1/2 
tan ~ (p2 _ q,Z)(p,2 _ qZ)j (4.12) 

Next, from (4.6) and (4.9) it follows that 

e 2K1= (4(1) w(p'/q', 1))/w(p'/q', O) 

e 2K2 = w(q'/p, 1)/w(q'/p, O) 

e 2K3 = w(p/q, 1)/w(p/q, O) 

e-2K4 = w(p'/q, O )/w(p'/q, 1) (4.13) 

where w(x, l) and q~(l) are defined by the relations (2.1)-(2.6) with N = 2 .  
Further, substituting these expressions into (4.1), one can easily check that 
up to a trivial scalar factor [which can be set to unity with the proper 
choice of w(x, 0)] the summand in (4.1) exactly coincides with the expres- 
sion in the curly brackets in (2.10) for the case of N =  2. Hence the weight 
function (2.10) for this case is essentially the same as that of (4.1), differing 
only by face-type equivalence factors unaffecting the partition function and 
by an overall normalization factor. 

For the moment let us restrict ourselves to the layer homogeneous 
case and fix N = 2. We have just shown that the model of Section 2 in this 
case reduces to the Zamolodchikov model. Hence, the modified model of 
Section 2 [which in the homogeneous n-layer case was shown to be equiva- 
lent to the critical sl(n)-chiral Potts model] is exactly the modified n-layer 
Zamolodchikov model considered in ref. 5. In that paper the partition 
functions per site in the thermodynamic limit were calculated for both of 
these models. Note, in particular, that for the first model these calculations 
are based on factorization properties of the transfer matrix and the sym- 
metry properties of the model. The former follow directly from the expres- 
sion (4.1) for the Boltzmann weights, while the latter are quite nontrivial 
for the representation (4.1): if Z denotes the partition function (1.1) for the 
M-site lattice, then (sin 03)M/2z is unchanged (5) upon an arbitrary per- 
mutation of the variables eo ..... e3 defined in (4.2). To prove this, one needs 
to restore all omitted equivalence transformation factors, returning to the 
original Zamolodchikov expressions for the Boltzmann weights of the 
model, which explicitly display this symmetry. 

Another aspect of the rotational symmetry in the Zamolodchikov 
model we would like to mention is as follows. Suppose one considers this 
model on a finite lattice of size l x m x n. Then modulo the modification of 
the boundary condition (which constitutes the transfer to the modified 
model discussed in Section 2) it can be regarded either as the sl(n)-chiral 
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Potts model on a two-dimensional lattice of size ! • m or, say, as the sl(m)- 
chiral Potts model on a lattice of size l x n. Thus, the rank of the underlying 
algebra for the two-dimensional model is interpreted as a third dimension 
of the lattice, which seems to be quite unusual and interesting. 

Note finally that the above method of the calculation of the partition 
function used in ref. 5 can be directly adopted to the case when N >  2, 
provided one could exhibit the rotational symmetry properties of the model 
generalizing, for example, the Zamolodchikov angle parametrization in this 
case. This problem is currently under investigation. 

Let us now discuss the inhomogeneous Zamolodchikov model. ~3) To 
describe it, first replace the cubic lattice 5e with its dual ~D. The cube 
shown in Fig. 1 is then replaced by the three planes intersecting at a point 
(which is the site of LPD), dividing the three-dimensional space into eight 
volumes with the spins a ..... h assigned to them. Now V(a ..... h) is regarded 
as the Boltzmann weight of the spin configuration of these eight volumes 
surrounding the site of ~D. Let us interpret 01, 02, 03 as dihedral angles 
between the planes, arranging them as follows. Consider a sphere with the 
center at the site of ~D. The above planes draw three great circles on 
the sphere dividing it into eight spherical triangles; 01, 02, 03 are exactly the 
intersection angles of these circles. The spins a ..... h can now be associated 
with the interiors of these triangles. Performing the stereographic projec- 
tion, one can map the sphere on the plane as shown in Fig. 12. 

Fig. 12. Stereographic projection of the sphere surrounding the site of ~o. The corner spins 
a,..., h in Fig. 1 are now associated with interior areas of eight spherica! triangles. 
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A nice feature of this geometric picture is that now one can define a 
"Z-invariant" solvable model (3' 24) on the irregular three-dimensional lattice 
formed by an arbitrary intersection of planes, no four of which intersect at 
the same point. In such a model the Boltzmann weights associated with 
each intersection point of three planes depend on the dihedral angles 
between the planes at that point. Of course, for a regular lattice Lfo with 
the coordination structure of the simple cubic lattice we get the same model 
as before. It will be formed by l + m + n  planes if we take its size as 
lx  m x n. Consider now a small deformation 5e~ of ~D preserving its 
coordination structure. Then its dual s will have the same coordination 
structure and we can consider the model as the interaction-round-a-cube 
model, but the angles 01, 02, 03 which parametrize the Boltzmann weights 
will vary from one cube of the lattice to the other. Of course they do not 
vary arbitrarily: 01 (02) is the same for any vertical (horizontal) line of 
adjacent cubes, while 03 is the same for any front-to-back line. Altogether 
one needs to specify 

# (angles) = 2( /+ m + n) - 3 (4.14) 

dihedral angles to fix the relative orientation of l + m  + n planes (three 
angles for the first three planes plus two angles for each additional plane). 

Consider, for example, the parallelepiped ~ consisting of n cubes, 
shown in Fig. 2. The angles 01, 02 could vary from cube to cube while 03 
remains the same for all the cubes in ~.  Let us generalize (4.10), (4.12), 
introducing the corresponding variables 0~ j), 0~ j), pj,  pj ,  qj, q'j. for the j t h  
cube in ~.  Then 

o(j) PJ o ( j )  t t 
2 . exp(ia~3J)) qjqj tan % = i p~, tan --~- = ,  ~ ,  = , 

�9 p / p )  

2 2 ,2 ,2 1/2 ~(pr _ q) )(p/ _ qj )~ (4.15) 
tan = i 2 t2 t2 2 

[ ( p j  -- qj )(P) -- q ) )J  

for any j = 1,..., n, where a~/), a(2 j), a{3 j) are the sides of the spherical triangle 
opposite to the angles O~ j), O<j ), 03. Comparing now the last of these 
relations with (2.12) (for N =  2), one finds that we have exactly reproduced 
the parameter structure of the parallelepiped weight function S of the 
inhomogeneous model of Section 2. In fact, we can do this consistently for 
all front-to-back lines of cubes and reproduce the fully inhomogeneous 
model discussed at the end of Section 2, expressing 2 n -  3 independent 
moduli of the curve (2.14) and 2 ( /+m)  rapidity variables through 
2( /+ m + n) - 3 dihedral angles (the number of the parameters defining the 
model, of course, remains the same). These calculations are given below. 
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Consider the curve (3.1) for N =  2 and introduce the set of n 2 two-by- 
two matrices {K,j}, i, j = 1,..., n, defined by the relations 

K0. = K ( ~ - i l K ( i - 2 ) - - - K  (/), i> j  

Kii :  1 (4.16) 

K0 = Kij 1 , i< j  

where K (i), i =  1 ..... n - 1 ,  are the same as in (3.1). Then, 

KijKjkKki = 1, Vi, j, k (4.17) 

and, with account of (2.15), 

det K 0. = 1 (4.18) 

Further, denote 

L ( (h+(P))2 
'=  \ (h ; (P))  

(4.19) 
M { (h+(Q))2 (h+(Q'))2) 

i=  \ ( h ? ( Q ) ) 2  (hi-(Q'))zJ 

Then from (3.1) it follows that 

L i = KuLi, M~ = KuMj, Vi, j (4.20) 

Equations (4.18) and (4.20) ensure that both d e t L  i and detM~ are 
independent of i, so one can set 

det L i = det M / =  1, Vi (4.21) 

by a trivial rescaling of h's. One could easily count that the matrices Kij, 
Mi, Li, i, j =  1 ..... n, form a (3n + 3)-parameter set. These parameters can 
conveniently be specified by the following construction. Consider the lattice 
No dual of the parallelepiped ~.  It is formed by n + 2 planes (horizontal, 
vertical, and n front-to-back planes). Let Sh, Sv, S~ ..... Sn denote the great 
circles corresponding to these planes as explained above. A typical part 
of the picture representing these circles is shown in Fig. 13 in the 
stereographic projection. Choose now arbitrary points Ah, A v, A1,..., An on 
each of these circles. Note that, up to overall rotations of the 3D space, 
such a configuration is defined by 3n + 3 parameters: 2n + 1 independent 
angles between the circles Sh, Sv, $1 .... , Sn and n + 2  arc lengths giving 
positions of the points A h, Av, AI ..... A n. Let rh denote the arc OAh, r~ 
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Ah 

Cj 

B 

Aj | 

i |  

O 

@1 \@ 
Fig. 13. A typical part of the picture representing the great circles corresponding to the 

planes which form the lattice ~o dual to the parallelepiped N. 

denote the arc OA v, and r i denote the arc AsCi, while 0ij denotes the angle 
between S~ and Sj for i, j = 1 ..... n. Comparing the Fig. 12 and Fig. 13, we 
can identify the various angles and arcs used in Eqs. (4.15) with the other 
elements in Fig. 13. Note, in particular, that a~ j), a~ j), a~ j) in those 
equations are, respectively, the arcs OCj, OBj, BjCj in Fig. 13. 

Below we need to use the following elementary formula, which can be 
found, e.g., in Eqs. (1)-(3") on p. 100 in ref. 25 (provided one identifies the 
variables used therein with the elements of the spherical triangle). 

Formula. Let 01, 02, 03 and al ,  a2, a3 be the angles and opposite 
sides of a spherical triangle, respectively. Then 

U ( 0 1 )  D ( s a 3 )  U ( 0 2 )  = D(eaz) U ( r c -  03) D(sal), ~ = _ 1 (4.22) 

where U and D denote unitary matrices 

U(0) = exp(iO'r~/2), D(~b) = exp(i~br3/2) (4.23) 

with zl, %, ~3 being the usual Pauli matrices. 

Now set 
Li = D(a~3 i ) -  ri) U(0~ i)) D ( - a ( i ) q  - rh) 

(4.24) 
M i = D ( - r i )  U(7~ --  0 (i)) D( -a~i)+ rv) 
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Using (3.2) and similar expressions for p'~, q~, q'i, one can easily check that 
(4.19) and (4.24) are consistent with (4.15). Expressing now K 0 from any 
of two relations (4.20) and applying the formula (4.22), we obtain 

K~ = D( - b~ - r,) U(Oo) D(bji + rj) (4.25) 

where bij and bsi denote, respectively, the arcs Oo.C i and OoC j in Fig. 13. 
The formulas (4.24), (4.25) give the required parametrization of Eqs. (3.1). 
Note that all the arcs rh, G, rl,..., rn which define the positions of the 
arbitrary points Ah, A~,A1 ..... A ,  on the circles cancel out of the 
Boltzmann weight functions (2.10) and (3.7). All the other parameters 
entering (2.24), (4.25) can be expressed through the 2n+ 1 independent 
angles which define the relative orientation of the n + 2 planes forming ND. 
Further, for any two-by-two matrix K define a function 

~(K) = k12kzl/kllk22 (4.26) 

where kab, a, b = 1, 2, denote matrix elements of K. Then, from (4.25), 

~ u  = ~ ( K 0 )  = - tan2 ~-, i, j = 1 ..... n (4.27) 

Obviously 4,7 is the only interesting combination of the matrix elements of 
K,j which is not affected by the transformations (2.16), (4.16). 

5. THE TWO-LAYER CASE 

In ref. 7 it is shown that the homogeneous two-layer Zamolodchikov 
model ( N =  2) reduces to the critical two-dimensional free-fermion model, 
which is equivalent to the critical checkerboard Ising model. (8) Here we 
generalize this statement for the layer inhomogeneous model with arbitrary 
value of N. 

Indeed it has been already shown in Section 3 that the modified 
n-layer three-dimensional model of Section 2 is equivalent to the sl(n)-CP 
model of ref. 17. When n = 2 (which is the two-layer case for the three- 
dimensional model) both models reduce to the (off-critical) chiral Potts 
model of ref. 11. The corresponding formulas are given below. 

Consider the curve (3.1) for n = 2 .  In this case there is only one 
(matrix) equation in (3.1) involving only one moduli matrix Km. Applying 
(2.16), we can transform it to the form 

K(U= 1 
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where k 2 + k '2 = 1 and k is an arbitrary parameter. From (2.14) it is clear 
that this parameter measures the inhomogeneity among the two layers of 
the three-dimensional model. When k = 0 the layers become identical. 

Let us denote 7 

ap=~ l/2hf(P), bp=h~(P), 

With these notations (3.1) gives 

N t N kcJ, ap +kbp = 

k a J + k ' c N = d  N, 

cp=h~(P), dp = h ~ ( P ) ( 5 . 2 )  

N N k'a N + bp = kcp 

kb; + 
(5.3) 

where each pair of (5.3) implies the other two. This is precisely the rapidity 
curve (9) of ref. 11. Let us write down the specialization of the curve (2.14) 
to n = 2. Introducing the variables Xp = ap/dp, yp = bp/cp and taking into 
account Eqs. (3.2), (5.2), one gets 

xN+ N _ k (  1 N N yp -- + Xp yp ) (5.4) 

Adding now the superscript (CP) to the Boltzmann weights given in 
Eqs. (2), (3) of ref. 11, we can write them as 

- -  ( C P )  m O)apdq_dpaqfOj 
Weq (m)_ FI . . . .  (5.5) 

- ( c P )  - -  1 1 Wpq (0 )  j = l  cpbq-bpcq r 

(cp) m dpbq-  Wt, q ( m ) =  F I  apCqO)~ 
(ce) 0 I J (5.6) Wpq ( ) j = l b p d q - c p a q O )  j 

where m is an integer. These Boltzmann weights satisfy the following 
symmetry relations [Eqs. (18a), (18b)o f  ref. 11]: 

- -  ( C P }  H Z  ( C P ) / ' • "  I ( C P )  V~rpq (m)= , ,  qRp\"*l, Wpq (-m)=W(RCp~)q(m) 

w(CV) _ , ( c P )  ( 5 . 7 )  pq (m) W(Ce)(m)= Wpq (0) w ( q C P ) ( o )  

where R denotes an automorphism of the curve (5.2) defined as 

(aRp, bRp, CRp, dRp)---- (G, ~ap, G, cp) (5.8) 

7 Note that P and p here have the same meaning: they refer to the same point on the curve 
(3.1). Below in this section we will use both upper case and lower case letters for the same 
rapidity variable (like P and p above) to match both the notation used in the preceding 
sections and the notation used in ref. 11. We hope that this will not cause any confusion for 
the reader. 
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For n = 2 the Boltzmann weight function (3.7) depends on only two 
spin differences ~1 and fll defined in (3.4). Denoting them simply as ~ and 
fl, respectively, and substituting (5.2) into (3.12), one gets 

- -  ( C P )  * 

W m (c~- fl) (5.9) 
W~o(o, o) W~q (o) 

where q5 is defined in (2.6). Further, the R-matrix (3,15) in the considered 
case is identical with the R-matrix of the checkerboard chiral Potts model 
given in ref. 11. Indeed, substituting (5.9) into (3.15) and using (5.7), we 
obtain (up to an inessential normalization factor) 

R(P,P', Q, Q'I~, fl, 7, 6) 
- -  ( C P )  ^ - -  = Wpq (o~--~) W(CpP)q,(~--r W(pCRPq)(~--r W(CpPq)(O~--~) ( 5 . 1 0 )  

which is exactly expression (20) of ref. 11 with their rapidities 
(Pl, P2, ql, q2) replaced by our (p, Rp', q, Rq') and their spins (~, #, 8, 2) 
replaced by our (c~, fi, r $), respectively. 

Thus the have proved the required equivalence of the modified two- 
layer, three-dimensional model of the present paper with the checkerboard 
chiral Potts model of ref. 11. As was remarked before, the parameter k 
measures the layer inhomogeneity of the three-dimensional model. On the 
other hand, it is a temperature-like variable in the chiral Potts model. It is 
critical when k = 0. The expression for the local state probabilities for the 
central spin e conjectured in ref. 26 reads 

(r ~j) = (k2) 3j, Aj _ j ( N - j )  2N 2 , j =  1 , . . . ,N-  1 (5.11) 

In particular, when N = 2 ,  (5.11) reduces to the Onsager and Yang 
expression (27"28) for the spontaneous magnetization of the Ising model, 
while (4.27) gives 

k 2 = - tan 2 01--22 (5.12) 
2 

where 012 is the dihedral angle between the front-to-back planes of two 
layers of the three-dimensional model. 

6. D I S C U S S I O N  A N D  C O N J E C T U R E S  

Here we give several remarks outlining consequent problems under 
investigation, indicating some interesting connections of the model with 
other subjects. 
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6.1. The Rotat ional  Symmetry  

Is the Boltzmann weight function (2.9) symmetric with respect to 
spatial rotations of the cube in Fig. 1? If so, can one generalize 
Zamolodchikov's angle parametrization for N >  2? 

6.2. The Local Integrabi l i ty  Condit ions 

We believe that the Boltzmann weights (2.9) satisfy the following 
three-dimensional star-star relation: 

V(alefglbcdlh)  w ( z , c - h - g + b ) s ( g + h , g - b )  
(6.1) 

V ( a l e f g l b c d l h ) -  w(z, e - d - a +  f ) s ( a + d ,  a - f )  

where V(a ..... h) is given by (2.9) with vo(a,..., h) replaced by 

~(a le fg lbcd lh )  

where 

= W q , q ( d -  h - f + b) Wq,~ (e - c - a + g) s(c, g - a) s(h, f -  b) 

• {W~,q 1 (a - f  + b) Wpq(O" - -  a -~-g) W q , p ( e  - -  c - -  r 

• ~p,q,(a -- d+ h) s( - a ,  a -  c - f +  h)} (6.2) 

(6.3) z = e  i~/u(F(p, p', q, q,))l/U 

with F defined in (2.12a). The phases of the Nth roots are fixed as an 
analytic continuation from the case when q = 1 and p, p', q' are positive 
real and 0 < p '  < q' < p  < 1. In this case all the arguments of the Nth roots 
in (2.3) and (6.3) are real and positive and we take positive values of the 
roots. For  N =  2 the relation (6.1) is exactly the relation (A.2) of ref. 5. We 
have verified (6.1) numerically for N = 3  and N = 4 ,  but at the moment it 
remains a conjecture, as we do not have a complete proof. 

6.3. The Functional  Equations 

We hope that one can generalize the functional equations of refs. 15 
and 29 to the case of the sl(n)-CP model. Note, in particular, that for the 
n = 3, N = 2 case the z-z equations (in the terminology of ref. 29) have a 
very simple form <3~ 

z(x)  z(xq) = e l (X)  + "~(x) -~ ~(xq) 
(6.4) 

f (x )  e(xq) = r + r z(xq) + ~b4(x) z(x) 
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where q 2 =  _ 1, r(x) is the transfer matrix constructed with the L-operator 
(2.2) of ref. 17 related to the vector representation of s/(3), while g(x) is a 
similar transfer matrix related to an antisymmetric tensor representation, 
and ~bi(x), i = 1,..., 4, are known scalar functions. 

6.4. The sl(n)-Parafermion Conformal  Field Theory 

It was argued in ref. 20 that the scaling limit in the critical sl(n)-CP 
model is described by sl(n)-parafermion conformal field theory. (21'=) If so, 
then this theory in the proper n ~ ~ limit could describe the scaling 
behavior of the three-dimensional model. 

6.5. The Quantum Groups at "Roots of Uni ty"  

The R-matrix (3.15) has been found ~17~ as the solution of the 
Yang-Baxter equation intertwining two cyclic L-operators related to the 
representation of the (modified) Uq(sl(n)) algebra with q2N= 1. Alter- 
natively, it can be described (23) as the intertwiner of two cyclic representa- 

tions of the Uq(sl(n)) algebra. This raises the question of the meaning of the 
three-dimensional structure of the sl(n)-CP model for the cyclic representa- 
tions of these algebras. 

6.6. Are There Other  Two-D imens iona l  Solvable Models Which 
Admi t  a Three-Dimensional  In terpretat ion? 

There are two known off-critical deformations of the Fateev- 
Zamolodchikov ZN modelJ TM The first is the original (n = 2) chiral Potts 
model, (11~ the second is the Kashiwara-Miwa "broken Zw" model. (31) Note 
that the latter can be regarded as a "descendant of the 8-vertex model ''(32) 
through the generalization of the algebraic construction of ref. 15. As 
remarked in ref. 17, one can apparently generalize these calculations 
starting with Belavin's elliptic R-matrix ~33~ that should result in the 
"sl(n)-generalized broken ZN model." This model should intersect with 
the sl(n)-CP model at criticality and therefore could admit the three- 
dimensional interpretation as well. 

6.7. The Magnet ic  Monopoles  in Three Dimensions 

There is the result by Atiyah and Murray reported in ref. 34 that the 
rapidity curve (5.4) of the (n = 2) chiral Potts model exactly coincides with 
the spectral curve which determines a special SU(2) Bogomol'ny 

822/69/3-4-3 
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N-monopole with cyclic ZN-symmetry in the hyperbolic 3-space. Murray 
informed us (35) that this connection can be extended when the gauge group 
is SU(n) relating the curve (2.14) with the spectral curve determining an 
SU(n) monopole solution. Unfortunately, these connections do not go 
beyond the coincidence of the algebraic curves: there is still no interpretation 
of the Yang-Baxter equation in the monopole theory. 
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